/* * Copyright (c) 2004, Bull S.A.. All rights reserved. * Created by: Sebastien Decugis * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * * You should have received a copy of the GNU General Public License along * with this program; if not, write the Free Software Foundation, Inc., 59 * Temple Place - Suite 330, Boston MA 02111-1307, USA. * This sample test aims to check the following assertion: * * This function is a cancelation point: when cancelability * is PTHREAD_CANCEL_DEFERRED and a cancel request falls, the thread * must relock the mutex before the first (if any) clean up handler is called. * The steps are: * -> Create a thread * -> this thread locks a mutex then waits for a condition * -> cancel the thread * -> the cancelation handler will test if the thread owns the mutex. */ /* We are testing conformance to IEEE Std 1003.1, 2003 Edition */ #define _POSIX_C_SOURCE 200112L /* We need the XSI extention for the mutex attributes */ #ifndef WITHOUT_XOPEN #define _XOPEN_SOURCE 600 #endif /********************************************************************************************/ /****************************** standard includes *****************************************/ /********************************************************************************************/ #include #include #include #include #include #include #include #include /********************************************************************************************/ /****************************** Test framework *****************************************/ /********************************************************************************************/ #include "testfrmw.h" #include "testfrmw.c" /* This header is responsible for defining the following macros: * UNRESOLVED(ret, descr); * where descr is a description of the error and ret is an int (error code for example) * FAILED(descr); * where descr is a short text saying why the test has failed. * PASSED(); * No parameter. * * Both three macros shall terminate the calling process. * The testcase shall not terminate in any other maneer. * * The other file defines the functions * void output_init() * void output(char * string, ...) * * Those may be used to output information. */ /********************************************************************************************/ /********************************** Configuration ******************************************/ /********************************************************************************************/ #ifndef VERBOSE #define VERBOSE 1 #endif #ifndef WITHOUT_ALTCLK #define USE_ALTCLK /* make tests with MONOTONIC CLOCK if supported */ #endif /********************************************************************************************/ /*********************************** Test case *****************************************/ /********************************************************************************************/ struct { pthread_mutex_t mtx; pthread_cond_t cnd; int type; clockid_t cid; sem_t semA; sem_t semB; int bool; } data; /**** First handler that will be poped * This one works only with recursive mutexes */ void clnp1 (void * arg) { int ret; if (data.type == PTHREAD_MUTEX_RECURSIVE) { ret = pthread_mutex_trylock(&(data.mtx)); if (ret != 0) { FAILED("Unable to double-lock a recursive mutex in clean-up handler 1"); } ret = pthread_mutex_unlock(&(data.mtx)); if (ret != 0) { UNRESOLVED(ret, "Unable to unlock double-locked recursive mutex in clean-up handler 1"); } } return; } /**** Second handler * This one will trigger an action in main thread, while we are owning the mutex */ void clnp2 (void * arg) { int ret; do { ret = sem_post(&(data.semA)); } while ((ret != 0) && (errno == EINTR)); if (ret != 0) { UNRESOLVED(errno, "Sem post failed in cleanup handler 2"); } do { ret = sem_wait(&(data.semB)); } while ((ret != 0) && (errno == EINTR)); if (ret != 0) { UNRESOLVED(errno, "Sem wait failed in cleanup handler 2"); } return; } /**** Third handler * Will actually unlock the mutex, then try to unlock second time to check an error is returned */ void clnp3 (void * arg) { int ret; ret = pthread_mutex_unlock(&(data.mtx)); if (ret != 0) { UNRESOLVED(ret, "Unable to unlock mutex in clean-up handler 3"); } if ((data.type == PTHREAD_MUTEX_ERRORCHECK) || (data.type == PTHREAD_MUTEX_RECURSIVE)) { ret = pthread_mutex_unlock(&(data.mtx)); if (ret == 0) { UNRESOLVED(ret, "Was able to unlock unlocked mutex in clean-up handler 3"); } } return; } /**** Thread function * This function will lock the mutex, then install the cleanup handlers * and wait for the cond. At this point it will be canceled. */ void * threaded (void * arg) { int ret; struct timespec ts; ret = clock_gettime(data.cid, &ts); if (ret != 0) { UNRESOLVED(ret, "Unable to get time from clock"); } ts.tv_sec += 30; ret= pthread_mutex_lock(&(data.mtx)); if (ret != 0) { UNRESOLVED(ret, "Failed to lock the mutex in thread"); } do { ret = sem_post(&(data.semA)); } while ((ret != 0) && (errno == EINTR)); if (ret != 0) { UNRESOLVED(errno, "Sem post failed in thread"); } pthread_cleanup_push ( clnp3, NULL); pthread_cleanup_push ( clnp2, NULL); pthread_cleanup_push ( clnp1, NULL); do { ret = pthread_cond_timedwait(&(data.cnd), &(data.mtx), &ts); } while ((ret == 0) && (data.bool == 0)); if (ret != 0) { UNRESOLVED(ret , "Timedwait failed"); } /* We will exit even if the error is timedwait */ /* If we are here, the thread was not canceled */ FAILED("The thread has not been canceled"); pthread_cleanup_pop(0); pthread_cleanup_pop(0); pthread_cleanup_pop(1); return NULL; } int main(int argc, char * argv[]) { int ret, i; void * rc; pthread_mutexattr_t ma; pthread_condattr_t ca; pthread_t th; long altclk_ok, pshared_ok; struct { char altclk; /* Want to use alternative clock */ char pshared; /* Want to use process-shared primitives */ int type; /* mutex type */ char * descr; /* Description of the case */ } scenar[] = { {0, 0, PTHREAD_MUTEX_NORMAL, "Normal mutex" } #ifdef USE_ALTCLK ,{1, 0, PTHREAD_MUTEX_NORMAL, "Normal mutex + altclock cond" } ,{1, 1, PTHREAD_MUTEX_NORMAL, "PShared mutex + altclock cond" } #endif ,{0, 1, PTHREAD_MUTEX_NORMAL, "Pshared mutex" } #ifndef WITHOUT_XOPEN ,{0, 0, PTHREAD_MUTEX_ERRORCHECK, "Errorcheck mutex" } ,{0, 0, PTHREAD_MUTEX_RECURSIVE , "Recursive mutex" } #ifdef USE_ALTCLK ,{1, 0, PTHREAD_MUTEX_RECURSIVE , "Recursive mutex + altclock cond" } ,{1, 0, PTHREAD_MUTEX_ERRORCHECK, "Errorcheck mutex + altclock cond" } ,{1, 1, PTHREAD_MUTEX_RECURSIVE , "Recursive pshared mutex + altclock cond" } ,{1, 1, PTHREAD_MUTEX_ERRORCHECK, "Errorcheck pshared mutex + altclock cond" } #endif ,{0, 1, PTHREAD_MUTEX_RECURSIVE , "Recursive pshared mutex" } ,{0, 1, PTHREAD_MUTEX_ERRORCHECK, "Errorcheck pshared mutex" } #endif }; output_init(); /* Initialize the constants */ altclk_ok = sysconf(_SC_CLOCK_SELECTION); if (altclk_ok > 0) altclk_ok = sysconf(_SC_MONOTONIC_CLOCK); #ifndef USE_ALTCLK if (altclk_ok > 0) output("Implementation supports the MONOTONIC CLOCK but option is disabled in test.\n"); #endif pshared_ok = sysconf(_SC_THREAD_PROCESS_SHARED); #if VERBOSE > 0 output("Test starting\n"); output(" Process-shared primitive %s be tested\n", (pshared_ok>0)?"will":"won't"); output(" Alternative clock for cond %s be tested\n", (altclk_ok>0)?"will":"won't"); #endif ret = sem_init(&(data.semA), 0, 0); if (ret != 0) { UNRESOLVED(errno, "Unable to init sem A"); } ret = sem_init(&(data.semB), 0, 0); if (ret != 0) { UNRESOLVED(errno, "Unable to init sem B"); } for (i=0; i< (sizeof(scenar) / sizeof(scenar[0])); i++) { #if VERBOSE > 1 output("Starting test for %s\n", scenar[i].descr); #endif /* Initialize the data structure */ ret = pthread_mutexattr_init(&ma); if (ret != 0) { UNRESOLVED(ret, "Mutex attribute object init failed"); } ret = pthread_mutexattr_settype(&ma, scenar[i].type); if (ret != 0) { UNRESOLVED(ret, "Unable to set mutex type"); } if ((pshared_ok > 0) && (scenar[i].pshared != 0)) { ret = pthread_mutexattr_setpshared(&ma, PTHREAD_PROCESS_SHARED); if (ret != 0) { UNRESOLVED(ret, "Unable to set mutex process-shared"); } } ret = pthread_condattr_init(&ca); if (ret != 0) { UNRESOLVED(ret, "Cond attribute object init failed"); } if ((pshared_ok > 0) && (scenar[i].pshared != 0)) { ret = pthread_condattr_setpshared(&ca, PTHREAD_PROCESS_SHARED); if (ret != 0) { UNRESOLVED(ret, "Unable to set cond process-shared"); } } #ifdef USE_ALTCLK if ((altclk_ok > 0) && (scenar[i].altclk != 0)) { ret = pthread_condattr_setclock(&ca, CLOCK_MONOTONIC); if (ret != 0) { UNRESOLVED(ret, "Unable to set alternative (monotonic) clock for cond"); } } #endif ret = pthread_mutex_init(&(data.mtx), &ma); if (ret != 0) { UNRESOLVED(ret, "Unable to init mutex"); } ret = pthread_cond_init(&(data.cnd), &ca); if (ret != 0) { UNRESOLVED(ret, "Unable to initialize condvar"); } ret = pthread_mutexattr_gettype(&ma, &(data.type)); if (ret != 0) { UNRESOLVED(ret, "Unable to get type from mutex attr"); } #ifdef USE_ALTCLK ret = pthread_condattr_getclock(&ca, &(data.cid)); if (ret != 0) { UNRESOLVED(ret, "Unable to get clock ID from cond attr"); } #else data.cid = CLOCK_REALTIME; #endif data.bool = 0; /** Data is ready, create the thread */ #if VERBOSE > 1 output("Initialization OK, starting thread\n"); #endif ret = pthread_create(&th, NULL, threaded, NULL); if (ret != 0) { UNRESOLVED(ret, "Thread creation failed"); } /** Wait for the thread to be waiting */ do { ret = sem_wait(&(data.semA)); } while ((ret != 0) && (errno == EINTR)); if (ret != 0) { UNRESOLVED(errno, "Sem wait failed in main"); } ret = pthread_mutex_lock(&(data.mtx)); if (ret != 0) { UNRESOLVED(ret, "Unable to lock mutex in main"); } data.bool = 1; /** Cancel the thread */ ret = pthread_cancel(th); if (ret != 0) { UNRESOLVED(ret, "Thread cancelation failed"); } sched_yield(); #ifndef WITHOUT_XOPEN usleep(100); #endif ret = pthread_mutex_unlock(&(data.mtx)); if (ret != 0) { UNRESOLVED(ret, "Unable to unlock mutex in main"); } /** Wait for the thread to be executing second cleanup handler */ do { ret = sem_wait(&(data.semA)); } while ((ret != 0) && (errno == EINTR)); if (ret != 0) { UNRESOLVED(errno, "Sem wait failed in main"); } /** Here the child should own the mutex, we check this */ ret = pthread_mutex_trylock(&(data.mtx)); if (ret == 0) { FAILED("The child did not own the mutex inside the cleanup handler"); } /** Let the cleanups go on */ do { ret = sem_post(&(data.semB)); } while ((ret != 0) && (errno == EINTR)); if (ret != 0) { UNRESOLVED(errno, "Sem post failed in main"); } /** Join the thread */ ret = pthread_join(th, &rc); if (ret != 0) { UNRESOLVED(ret, "Unable to join the thread"); } if (rc != PTHREAD_CANCELED) { FAILED("thread was not canceled"); } #if VERBOSE > 1 output("Test passed for %s\n", scenar[i].descr); #endif /* Destroy datas */ ret = pthread_cond_destroy(&(data.cnd)); if (ret != 0) { UNRESOLVED(ret, "Cond destroy failed"); } ret = pthread_mutex_destroy(&(data.mtx)); if (ret != 0) { UNRESOLVED(ret, "Mutex destroy failed"); } ret = pthread_condattr_destroy(&ca); if (ret != 0) { UNRESOLVED(ret, "Cond attribute destroy failed"); } ret = pthread_mutexattr_destroy(&ma); if (ret != 0) { UNRESOLVED(ret, "Mutex attr destroy failed"); } } /* Proceed to next case */ ret = sem_destroy(&(data.semA)); if (ret != 0) { UNRESOLVED(errno, "Sem destroy failed"); } ret = sem_destroy(&(data.semB)); if (ret != 0) { UNRESOLVED(errno, "Sem destroy failed"); } PASSED; }